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ABSTRACT

In this paper we show that there is a close relationship between variable

metric methods of function minimization and filtering of linear stochastic systems
with disturbances which are modelled as unknown but bounded functions . We develop

new variable metric algorithms for function minimization.

1. INTRODUCTION

The objective of this paper is to show that there is a close relationship

between variable metric methods of function minimization and filtering of linear
stochastic systems with disturbances which are modelled as unknown but bounded
functions .

It is well known that Newton ’s method for function minimization exhibits

quadratic convergence in the neighborhood of the minitnun . This rapid convergence

rate however is obtained at the expense of requirin~ second derivative computations

and solution of a linear equation at each iteration stage . On the other hand,

variable metric methods do not require second derivative computations nor matrix
inversion (solution of a linear equation) and versions of this algorithm are known

to exhibit reasonably rapid convergence . Intuitively, one nay consider a variable

metric method as one where an estimate of the Hessian (or inverse of a Hessian) is

obtained on the basis of information on function values and gradient values in past

iterations and the next step is determined on the basis of this estimate. In this

paper, we attempt to make this intuitive notion precise .

The work closest in spirit to this work is the doctoral dissertation of THOMAS
(4) .  The stochastic models we derive are however, sonewhat different and we exploit

linear filtering theory to the fullest extent possible. We obtain algorithms which
do not require accurate line search algorithms as was also done by Thomas .

2. FILTERING MODEL FOR THE ALGORI TH!~

Consider the ProblenITgnim
~On6 2 7 0 6 ~~~

( f ( x ) I x c  !R5 ~ where (2.1)
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f is assumed to be thrice continuously differentiable on

Let

Vf (x) g(x) and D2f(x) — G (x) . (2.2)

Let x~ be a local minimum of f and in some open, convex neighborhood D of

, let us assume

IIG (~ + — G(xk + 025k) 1 t  < L~01 
— 02 1 • Ii ~ I ! where L > 0 (2.3)

for all ~~~~~~ + 
~~~~ 

, all 01,02e[O ,l).

We wish to discuss iterative algorithms for mininizing f (x) and the algorithm

proceeds as Xk+l ~~ + 5
k 

, k 0,1,2,...

Let us use the notation

Gk (O) G(x~ +

(2.4)
+ , k — 0,1,2,...

It is easy to see that there exists Uk€L1(O ,l
~
((t

~
C))  such that

0
Gk(O) — Gk (O) = f Uk

(t)dt , with

0

(2.5)

IIUk(0)II < L ll sk It , k = O ,1,2,...,~~c(0,l) .

0Also
= ~~

(O) + f Gk
(t) skdt . (2.6)

0

Evaluating (2.5) and (2.6) at 0 = 1, and using the natural notation G.~(1) —

, G~ (O) — ‘ ~~~~~ 
= 9k+1 ~ etc., 

we get

1

+ J U3~(t)dt
0 (2.8)

= + G
k
s
k 

+ f (G~ (t) - (0) ] s,dt •

0

78 06 27 067
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ACC~Ss~ON f~
Let hit S WI~te Sect ion~~1. B~~f Section Q

V = f U (t)d t I~NA’4 4
~ ‘“ ~~~

k k .iusr! c; :
0

1 BY
— I (G~ (t) — G._ (O) )s ~~ . WSTrn8U1I9W/~YAftABI1Iry ~UOES
0 

‘~ Oist. /~~

Then , we may rewrite (2.8) as

)
(2.9)

~~~~~~~~~~~~~~~~~~~~ .)
It is natural to think of V

k 
and w

k 
as process and observation noise re.—

pectively. They are obviously correlated. We now atte~~t to bound the noise.

3. BOUNDS ON THE NOISE

To do the bounding, we use the following devices Let denote the i~~ ___

of G • We then use the isomorphism

/ Y j
2

Yn

We can then rewrite equation (2.8) in differential forn:

d
~~ 

(iG~) — iU
k
(O)

(2.10)

~~~~ 
— (I Q s

3~
) (iG~(0))

In the above ‘ denotes transpose and Q denotes tensor product. Writing (2.10)

in vector-matrix form:

iG
k
(O) / 0 o\/ick e)\ /iuk(9\

d =~ II j + ( J .  (2.11)
dO 

~~(O) \x~8s,~ 0/\q~
(e) / \ 0 /

We are interested in bounding V
k 

and Wk 
as U

k
C•) varies over the class of

all mappings given by (2.5) . Clearly, the set of all (iV,.wk
) as U

k
(.) varies

is a convex set in if? + • Let denote the set. We can compute the support

function of this set and estimate that the support function n,,~(G*,g*), G*Ec4R
’
~)*,
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(~ denotes the dual space ) satisfies:

1 2 1/2
fl~ (G* ,g*) < L I i s k ti {~ ~~~~~~~~~~~~~ 

+ (g*,G*s~) + . (2.12)

It is easy to see that an appropriate choice of U
k
(•) in the class defined by

(2.5) attains this bound and hence the support function can be computed as:

/G*\ /G*\ 1/2
— LJIskII{(~ ) ‘~ k~ )>) (2.13)

g*

where c., •> is the obvious inner product in ~j.~~?) x and in the matrix

defined from the right hand side of (2.12). We can check that > 0 (unless

The above discussions may be cothined in the following :

Consider the problem of estimating Gk from

— Gk + Vk (2.14)

G~s~ + wk , where Zk — - . (2.15)

Let where

= {G~~ (~â f.CG - Ge,, ;‘(G — GQ) >
2 ~ 

1 (2.16)

and > 0 are given .

Then
Proposition 1

( jE~~~.where

— ((v)tt~(t?) x al? ~~~ ~ <v,Q~ v> <1) . (2.17)
L1~s ~ k

4. SOLUTION OF THE ESTIHATION P?O3LZ~

The estimation problem can now be solved using the work of BERTSEKAS (1) . It

consists of recursively estimating the sets , which are ellipsoids. The centre

of the ellipsoid is the desired estimate. These results are summarised in 
-_______
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Prot osition 2

— {GI<G_GK+l, ~~~~~~~~~~~~~~ 2 
< l-Y

K} 
(2.18)

+

where satisfies

k—O ,1,2 
S 

(2.19)

and P~ is given by

2 L
~IIskII I.2Il sk I I  ~Px+l

z
~
(1+IIskII )~

Pk+L Il SkIi I fl
_ 

~~k 2 
I
fl

]S~S~~~(P:~ç I 2 1n1 (2.20)

(ski 
~

‘k 
L2JJs1 , t 1~~)5

3ç
)

— + (
~k~~

k
~
k]s ’k [Pk+ L~~~1 I] (2.21)

and 

- 

A 
~:

‘ ~~~~~ J SJJ I I)

i Izk Gksk Il
V

k = 
L2IIskIf f1+IIskII]s

t
k(Pk+ 

L~~~11I 1)5
k 

(2.22)

Proposition 3
If H

~ 
— exists and is generated by (2.20) — (2.22) then

= is, + 
________________  (2.23)

ak+d k

is the inverse of where

c
k 

= ~~k’ 
1
~k~ ~~~k

1’ I ’ ~~
- < 1 (2.24)

~ k’ t
~k~ 

I ISkI 
~~~~~

(P + 11 5k1l ‘ ~k 2 (2.25)
k 

~~k’ ~~~
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5. NEW ALGORITFR-IS FOR FUNCTION g ~1I::I::IzATIoN
Since we are looking for an estimate of the Hessian (or inverse of the

Hessian)jt is desirable that our estimates are sym~tet:ic. This suggests the

following algorithm:

Ci) Propagate Is, and 
~k 

according to (2.23) and (2.20)

(ii) Symmetrize H.
~ 

to obtain
(iii) Find the closest approximation Is, to H so that the secant

equation 5
k 

= Xz
k 
is satisfied.

(iv) The new step is computed according to Powell’s dog—leg

strategy (cf. POWELL [3))

We now present a number of convergence results corresponding to the use
of different estimates for the Hemian . 

-

S Suppose we update and H.K according to (2.20) and (2.23)—(2.25) with

The new step is chosen according to the forrtula

= , and let us update IL
~ 
according to (5.1)

~

K+1 = (1+ 1 I Ski I) I11k+I ‘a k ’ II~ 
- ~~~~~~ 

dkd k 1S 

~~k °k (5.2)

• n c;21
0

We then have:

Lemma 5.1

1!. >~~~ > 0 V k> O .  (5.3)K k  —

We know, that if is non-singular then -

A

= G
k 

+ ~~~~~~ ~k~~~ k , k=0,1,2,... (5 4)

We can then show
Lemma 5.2

There exists a ~i>O , such that

iI Gk GkIi 2~~.V, k > O .  (5.5)

These ideas enable us to prove the following basic convergence theorem:

_ _ _  - .-
~~~~~~~~~~~~~~~~

-
~~~~~~~~ S—  ~~~~~~~~~~~~~~~



____

-. 
•

S

• Theorem 5.3

Let g: R~ 
-

~~ R~ be differentiable in an open convex neighborhood D of x~,
where x~ satisfies g(x*)=O and we also have Dg(x*) = ~(x*) is non—singular. Let

us suppose that G(~ ) satisfies

~~G (x) -.G (y ) J J  < L ~~x—y~ J , y x,ycD. (5.6)

Then for each y > 0, rC[0,1], 9t5=6(y,r ) ,  £—c (y, r) such that if I 1x0_x*i I ~~~. ~~

and 1G0—G01 i$ya, ac(0,c], then, the sequence

— — EG~)~
1
~ (5.7)

converges to x~.

Moreover

I Ix~+1-x ”I <y~ x~~x*~ and the sequence (5.8)

(~ IG~ 1 I) and ( I I Hk I J )  are uniforuly bounded .
k=0 ,l , .. .  k=O , l, . . .

Theorem 5.3 shows that we obtain linear convergence. One can show that the

convergence is actually superlinear.

So far we have constructed an algorithm which uses the output of the filter

directly. As we have previously remarked it would be desirable to “symmetrize”
the estimate and use this as in the algorithm. It can be shown that an algorithm

using the synimetrized estimate converges linearly under the sante hypotheses as

that of Theorem 5.3. However a proof of convergence of the algorithm when

the estimates are also chosen to satisfy the secant equation is at present

not available. The details of the proof of the various results, presented in

this paper will appear elsewhere [cf. MITTER—TOLDALAGI (21 1.
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